The N-Terminal Domain of Y-Box Binding Protein-1 Induces Cell Cycle Arrest in G2/M Phase by Binding to Cyclin D1

نویسندگان

  • Payal Khandelwal
  • Mythili K. Padala
  • John Cox
  • Ramareddy V. Guntaka
چکیده

Y-box binding protein YB-1 is a multifunctional protein involved in cell proliferation, regulation of transcription and translation. Our previous study indicated that disruption of one allele of Chk-YB-1b gene in DT-40 cells resulted in major defects in the cell cycle. The abnormalities seen in heterozygous mutants could be attributed to a dominant negative effect exerted by the disrupted YB-1 allele product. To test this hypothesis the N-terminal sequence of the YB-1 was fused with the third helix of antennapedia and the green fluorescent protein. These purified fusion proteins were introduced into rat hepatoma cells and their effect on cell proliferation was studied. Results indicate that the N-terminal 77 amino acid domain of the YB-1 protein induced the cells to arrest in G2/M phase of the cell cycle and undergo apoptosis. Additional deletion analysis indicated that as few as 26 amino acids of the N-terminus of YB-1 can cause these phenotypic changes. We further demonstrated that this N-terminal 77 amino acid domain of YB-1 sequesters cyclin D1 in the cytoplasm of cells at G2/M phase of cell cycle. We conclude that the N-terminal domain of YB-1 plays a major role in cell cycle progression through G2/M phase of cell cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-96: Appositional Expressions of Cyclin D1 and E2F1 Gene Machineries in Mycooestrogen Zeralenone-Induced Apoptosis in Testicular Tissue of Rats

Background: Zearalenone (ZEA) is known as a nonsteroidal oestrogenic mycotoxin produced by different species of Fusarium fungi. ZEA is known for its competitive effects with the natural 17-β estradiol to bind with the specific binding sites of the estrogen receptors (Ers). On the other hand, the cyclin family (especially cyclin D1) and E2F1 genes are the checkpoint genes involved in cell cycle....

متن کامل

Inhibition of CBF/NF-Y mediated transcription activation arrests cells at G2/M phase and suppresses expression of genes activated at G2/M phase of the cell cycle

Previous studies showed that binding of the CBF/NF-Y (CBF) transcription factor to cellular promoters is essential for cell proliferation. This observation prompted us to investigate the function of CBF in relation to cell cycle progression and in cell-cycle-regulated transcription. In this study, we used a tetracycline-inducible adenoviral vector to express a truncated CBF-B subunit, Bdbd, lac...

متن کامل

Notch activates cell cycle reentry and progression in quiescent cardiomyocytes

The inability of heart muscle to regenerate by replication of existing cardiomyocytes has engendered considerable interest in identifying developmental or other stimuli capable of sustaining the proliferative capacity of immature cardiomyocytes or stimulating division of postmitotic cardiomyocytes. Here, we demonstrate that reactivation of Notch signaling causes embryonic stem cell-derived and ...

متن کامل

Transforming growth factor-alpha enhances cyclin D1 transcription through the binding of early growth response protein to a cis-regulatory element in the cyclin D1 promoter.

Cyclin D1 is a critical oncogene involved in the regulation of progression through the G1 phase of the cell cycle, thereby contributing to cell proliferation. This is mediated through interaction of cyclin D1 with its catalytic partners, the cyclin-dependent kinases, and the subsequent phosphorylation of the retinoblastoma protein. Cyclin D1, in turn, is regulated by mitogenic stimuli. We demon...

متن کامل

Estrogen Receptor Beta Displays Cell Cycle-Dependent Expression and Regulates the G1 Phase through a Non-Genomic Mechanism in Prostate Carcinoma Cells

BACKGROUND It is well known that estrogens regulate cell cycle progression, but the specific contributions and mechanisms of action of the estrogen receptor beta (ERbeta) remain elusive. METHODS We have analyzed the levels of ERbeta1 and ERbeta2 throughout the cell cycle, as well as the mechanisms of action and the consequences of the over-expression of ERbeta1 in the human prostate cancer LN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009